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Landau model for self-assembly and liquid crystal 
formation in surfactant solutions 

by M. A. ANISIMOV*, E. E. GORODETSKY, A. J. DAVYDOV 
and A. S. KURLIANDSKY 

Oil and Gas Research Institute of the Russian Academy of Sciences, 
63-65 Leninski Prospect, Moscow B-296, 1179 17, Russia 

(Received 8 July 1991; accepted 6 December 1991) 

A new universal approach to the description of the formation of supramolecular 
structures in surfactant solutions based on the Landau theory of phase transitions 
with coupled order parameters is proposed. It is shown that the specific interaction 
of amphiphiles with random inhomogeneities of a solvent (in water/oil/surfactant 
mixtures) may lead to a particular type of phase transition: formation of the locally 
inhomogeneous isotropic phase (microemulsion) or lyotropic liquid-crystalline 
phases. The topology of the phase diagram is discussed. 

It is well-known that surfactant solutions display a great variety of exotic liquid- 
crystalline and isotropic phases which are of considerable scientific and practical 
interest [l]. However, in spite of the apparently endless flow of theoretical and 
experimental work on this subject, a universal approach, able to explain the entire 
succession of phase transitions in such a system, is still lacking. We introduce here a 
new semi-phenomenological approach, which, as we expect, will provide considerable 
progress towards a greater understanding of the processes of supramolecular structure 
formation in surfactant solutions. We start from the following definition. Let us 
distinguish between surfactant molecules from both, roughly-speaking, sphere-like 
molecules which form isotropic liquids, and rod-like molecules constituting thermo- 
tropic liquid crystalline phases. The presence of a small parameter a/(<< 1 (where a is 
the thickness of an amphiphillic molecule, 5 is its length) relates these molecules to rod- 
like ones, but the hydrophobic tails and hydrophillic heads of surfactant molecules are 
not equivalent with respect to the solvent. This leads to the specific interaction of such 
molecules with density inhomogeneities, either induced by spontaneous fluctuations, 
or connected with interfaces (for example water-air or water-oil surfaces). Turning to 
the mathematical formulation of the model, we note that in order to account for the 
non-equivalence of the head and tail of a surfactant molecule, we can introduce a unit 
vector pi corresponding to a molecule, which defines its orientation. Let us consider this 
vector as being directed from the hydrophobic tail to the polar head of the molecule. 
Taking a volume, which is small, as compared to the volume of the system, but 
containing a considerable number of surfactant molecules AN,  we define the mean 
value of pi by 

* Author for correspondence. 
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942 M. A. Anisimov et al. 

The idea of using the vector order parameter for the description of surfactant solutions 
was reported by us in [2] and independently by Chen et al. [3]. The difference between 
these two similar approaches will be discussed later. 

For definitiveness we consider a ternary water/oil/surfactant system. We suggest 
the following form of the excess Gibbs free energy A@ which accounts for the 
appearance of density inhomogeneities 

and 

C l - c  
f(c) = c In - + (1 - c) In -. 

e e ( 5 )  

Where A@l is the usual Landau expansion for the free energy of a fluid binary mixture 
near the critical consolute point together with a higher order gradient term (cf.[4]), AQ2 
is that part of the free energy, related to deviations of the surfactant local concentration 
c(r) from its mean value co, A@jnt is that part of the free energy associated with the 
interaction of the surfactant molecules with density inhomogeneities, z = (T - T,)/T, is 
the deviation of temperature T from the critical temperature T,, cp is the density 
difference between oil and water phases, ro is the average distance between molecules, 
which is much less than the length of an amphiphillic molecule t, p j  is the jth 
component of the vector p; v,  y, b,, b,, A ,  1, and fi are system-dependent constants. 

We can obtain the equilibrium distributions c(r), p(r), and cp(r) from the 
minimization conditions for the free energy A@ 

dA@/dc( r) = 0, (6) 

dA@/dp(r) = 0 (7) 

dA@/&p(r) = 0. (8) 

c(r)=co{co+(1 -co)exp CE(P,cp)I) (9) 

and 

The first of these equations leads to the relation 

between the local concentration c(r) and mean concentration co where the function 
E(p, cp) is defined by 
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Landau model for self-assembly of surfactants 943 

Equation (7) may be solved easily in momentum space and yields 

p(t)= -U/(j?l)C kq(k)[x2 + k 2 ] - ’  exp(ik*r), (1 1) 

where k is the wavevector, and ~ = ( A / j ? ) ” ~ l - ~  is the inverse correlation length of 
fluctuations of the order parameter p. 

Incidentally, neglecting the term proportional to C(VP,)~ in equation (4), we can 
solve equation (7) even in real space, and this yields p = - (A</A)Vcp. Thus, the coupling 
c($Ap2 + A<pVcp) reduces to the term a - c(V(P)~. Such coupling, to our mind, is one of 
the main features of amphiphiles. In general, it seems plausible to use the interaction 
term of the form 

k 

cg(Vcp, V2V, V(V2d, * f .I. 
For instance, we can take g = A,(V~I )~  + ;~,(V’(P)~ + A3[V(V2~)]2 +. . .. We argue that 
this specific coupling of the surfactant concentration c with gradients of density of the 
dissolvent is responsible for the self-assembly processes in lyotropic systems. 

Substituting the calculated values of c(r) and p(r) (equation (9) and (11)) into 
equations (1H5), we obtain, in momentum space, up to the fourth order term 

‘dk)d- k, d k l ) d k 2 ) d k 3 ) s k 1  + k2 + k 3 . 0  
ki 

where 

~(k)-’ is the inverse susceptibility with respect to the order parameter cp(k), Vis the 
volume of the system and 6 is the Kronecker delta function. 

Further we should, in principle, minimize the free energy with respect to p(r) in 
order to determine the actual structure of the mixture. Thus the construction of the 
phase diagram may be completed. However, this way appears to be too complicated 
even in momentum space. Instead, we apply the so-called direct variational method 
widely used in the physics of liquid crystals (see for example, [S ] ) .  By choosing the 
proper trial function we can compare the corresponding free energies for different 
phases. We must note, that the structure of expressions (12)-(15) for the excess free 
energy of the system differs both from the corresponding expressions for the case of the 
usual binary or ternary mixtures without surfactants and that of thermotropic liquid 
crystals. The main difference, induced by the chosen form of the interaction from 
equation (4), is hidden in the specific k dependence of the inverse susceptibility ~ ( k ) - l  
and the effective coupling constant 7. This difference leads to new physical effects, in 
particular, the formation of the isotropic microinhomogeneous phase is predicted. 
Besides, as in thermotropic liquid crystals [ 5 ] ,  the usual succession of crystalline phases 
may be altered. 
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X-’ 

T 

A - , k ko 
Figure 1. Inverse susceptibility of an oil/water/surfactant system. 

Now, we turn to the k dependence of the inverse susceptibility (see figure 1). At small 
values of c,(c, <c& where c: =(Abl/AZ)(ro/()’) the presence of the surfactant does not 
lead to any change of phase structure. This case corresponds to the usual isotropic 
molecular solution. Incidentally, two variants are possible: T =- 0 (one phase region) and 
z <O (two phase (waterloil) region). In the latter case all formulae given here remain 
unchanged with z replaced by z”= z + @’ > 0, where @ is proportional to the equilibrium 
value of density difference between oil and water phases. When c ,  > cg a minimum in 
the k dependence of the inverse susceptibility at finite values of k appears: for such 
values of k,  b(k) becomes negative. It means that the formation of a locally 
inhomogeneous structure in the surfactant solution is preceded by passing through the 
so-called Lifshitz point where b(k =0) =O [6]. Note, that b(k) < 0 for 0 < k < k* = E’/ ’K, 

where E = (c - c:)/c$. Therefore the Lifshitz line is defined by the condition E = 0. 
First, let us consider the symmetric case when v = O .  In reality it corresponds to 

equal solubility of a surfactant in both oil and water as well as to an oil/water ratio close 
to unity. In this case the phase transition is second order and occurs when 

A = ~ ( k , ) - ’  = 0, 

where k ,  corresponds to the minimum of the function x(k)-’ (see figure 1): 

kOx[(l + E ) ’ / ’ -  l ] ’ ”~ .  

We find 

A N  z - b,r$?[(l + E)”’ - 11’ =O, (17) 
which defines the second order phase transition line zt&) (see figure 2). This line 
separates the homogeneous isotropic one phase mixture from the locally inhomog- 
eneous one (k, > 0). This phase can be either isotropic (bicontinuous symmetric 
microemulsion) or an anisotropic liquid crystal (lamellar, hexagonal, etc.). The Lifshitz 
line ( k ,  =0, E = 0) separates the states, both one phase and two phase, with their different 
k dependence of the susceptibility. When E > O  the system tends to form a structure 
with selected values of k,. For such values of ko b(k) is always negative. We define the 
critical Lifshitz point as a point where b(k =0) = 0 and A = 0. In this point the process of 
the formation of the supramolecular structure with k,+O is accompanied by critical 
consolution (see review in [7]). 

The line z=O describes the usual critical consolute points while E<O. When E 

becomes positive the line of the critical consolute points no longer exists. At negative 
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12 

Figure 2. The phase diagram of an oil/water/surfactant system in the vicinity of the critical 
Lifshitz point. I,  is the one phase molecular solution, I, is the molecular solution with a 
maximum at a non-zero wavevector in the structure factor (no stable inhomogeneities), 
W-Ois the two phase region, M is the isotropic bicontinuous microemulsion, and L is the 
lamellar phase. 

values of t the Lifshitz line ( E  = 0, k ,  = 0) coincides with the condition of the stability 
limit of the modulated phase 

(d’A@/dk’)k =ko = 0. 

Thus it is a line of second order transitions between the two phase molecular solution 
and modulated (lamellar or bicontinuous) phase. The order parameter for this 
transition is ko. If the modulated phase is lamelar, k;  ’ is the length of the spatial density 
wave. 

The detailed structure of the new phase may be found with the help of the direct 
variational method. We have considered four possible trial functions cp(r), correspond- 
ing to cubic (BCC), hexagonal, lamellar (or smectic A) and isotropic microemulsion 
structures 

qecc = [$/ 12’/’] 1 exp (ikjr), j = 1,. . . ,12, 

j = 1, . . . ,6 ,  

j =  1,2, 

( P ~  = [$/N1/’] exp [ikjr + 9( k,)], j = 1, . . . , N (21) 
k i  

where kj are the basic wavevectors. Let us consider the definition of the trial function 
cpM(r) for isotropic microemulsion (bicontinuous) phase introduced in equation (21). 
The phase variables 9(kj) = - 9( - kj) have been chosen as random values within the 
interval from -n: to 7c. The distribution function is equal to 1/27c. Next we assume that a 
set of the basic wavevectors k,(lkjl =ko, j =  1,. . . , N>> 1) has the following properties: 

(i) vectors k, are distributed uniformly in all momentum space directions, 
(ii) there are no vectors k,,, kjz, kj3, kj4, which satisfy the condition kj, + kj, + kj3 

+kj4=0 but simultaneously do not lie on the same plane. 

The structure of the phase appears to be insensitive to the second assumption, however 
the latter leads to a considerable simplification of calculations. 
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946 M. A. Anisimov et al. 

It is easy to show that the mean value of the function qM(r) is equal to zero, and the 
function G(IR() defined by the relation 

G ( l R I ) = ( q M ( r ) q M ( r  + R))V=(l/v dr %dr)qM(r+ R, s 
can be calculated in the case when N + cx). We find 

G(I RI) = v sin (k,R)/(k,R), 
where 

I,!/ = G(0)”z =(((P&)~”. 

Since k;  appears to be the only characteristic length in the isotropic system we expect 
that the function qM(r) represents the isotropic microemulsion (bicontinuous) phase. 

Substituting the functions (18H21) into the expression for the free energy (12) we 
obtain the following expressions for the effective coupling constants: 

7;  = (1 / 16 )~  - (3/64)D~’, 

YXEX =(5/48h - (3/64)DE2, 
~B*cc=(5/32)~-(19/384)0~~, 

7; = (1 / 8 ) ~  - (1/ 12)Dt?, 

where 

D = (Azbl/p)~2r$ 

In order to compare the values of the free energy at the minima it is sufficient to 
compare the values of the effective coupling constants. We can see that among the four 
structures considered only two can be formed when E<< 1: lamellar and bicontinuous. 
Incidentally, the lamellar phase precedes the microemulsion if 0 < z < (3/7)@y/Az); 
however the latter result is strongly connected with the choice of the trial function and 
cannot be regarded as general. The total phase diagram can be completed only by 
taking account of asymmetric terms in the free energy. In such a way, the dilute 
microemulsions and the actual succession of liquid-crystalline phases can be obtained; 
this will be the subject of a later publication. Here we note only one but non-trivial 
result. Accounting for the cubic term v q 3  in the free energy (see equation (2)) we have 
found that at values of 

z>z* =(15/51)(yp/A2)+(51/270)(d/y), 

E > E* = ( 6 0 ~ /  5 1 Ab #”(fl/A)( Siro) 
a hexagonal crystalline phase precedes the BCC lattice. This result shows that the 
specific interaction between amphiphiles with density gradients may alter the 
conventional succession of crystalline phases in surfactant solutions. 

Now we make a few comments concerning the relation between our model and that 
proposed by Chen et al. [3]. The phase, called a microemulsion in [3], is the 
homogeneous molecular solution with a maximum at the non-zero wave-vector in its 
structure factor. This phase corresponds to the region I, in our phase diagram (see 
figure 2) and differs from the usual molecular solution only in the fluctuations (there are 
no stable microemulsion droplets). 
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Landau model for self-assembly of surfactants 947 

Taking into account the q dependence of the fourth coupling constant y we have 
obtained the thermodynamically stable isotropic phase (M), which we call a 
bicontinuous microemulsion phase. There is no corresponding region in the phase 
diagram of [3]. Our phase diagram is analogous to that in thermotropic liquid crystals 
in the vicinity of a smectic C- smectic A- multicritical point [S]. In the vicinity of this 
point the nematic (less ordered) region is divided by the Lifshitz line into the two parts: 
region with A-type smectic fluctuations and a C-type one. In the region of the C-type 
smectic fluctuations the equilibrium value of smectic C order parameter is still zero just 
as in the region I, of our phase diagram the equilibrium value of ~ ( k ,  +O)=O. 

In conclusion we would like to emphasize the main result of this work: the presence 
of a surfactant in a liquid mixture leads to a radical change of the phase diagram. The 
new isotropic but microinhomogeneous phase may become more preferable than any 
lyotropic liquid-crystalline phases. 

It is a pleasure for us to thank V. E. Podneks for many helpful discussions. 
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